The combinatorics of frieze patterns and Markoff numbers
نویسندگان
چکیده
This article, based on joint work with Gabriel Carroll, Andy Itsara, Ian Le, Gregg Musiker, Gregory Price, Dylan Thurston, and Rui Viana, presents a combinatorial model based on perfect matchings that explains the symmetries of the numerical arrays that Conway and Coxeter dubbed frieze patterns. This matchings model is a combinatorial interpretation of Fomin and Zelevinsky’s cluster algebras of type A. One can derive from the matchings model an enumerative meaning for the Markoff numbers, and prove that the associated Laurent polynomials have positive coefficients as was conjectured (much more generally) by Fomin and Zelevinsky. Most of this research was conducted under the auspices of REACH (Research Experiences in Algebraic Combinatorics at Harvard). RÉSUMÉ. Cet article, basé sur un travail conjoint avec Gabriel Carroll, Andy Itsara, Ian Le, Gregg Musiker, Gregory Price, Dylan Thurston, et Rui Viana presente un modèle combinatoire expliquant les symétries dans les tableaux numérique appelés motifs frieze par Conway et Coxeter. Ce modèle, basé sur les couplages parfaits, donne une interprétation combinatoire des algèbre de cluster de type A de Fomin et Zelevinksy. Ce modèle permet de fournir une interprétation énumérative des nombres Markoff, et on peut démontrer que les polynômes de Laurent associés ont des coefficients positifs, ce qui avait été conjecturé (dans un cadre plus général) par Fomin et Zelevinsky. Cette recherche s’est déroulée dans le cadre du programme REACH (Research Experiences in Algebraic Combinatorics at Harvard).
منابع مشابه
Coxeter’s frieze patterns at the crossroads of algebra, geometry and combinatorics
Frieze patterns of numbers, introduced in the early 1970s by Coxeter, are currently attracting much interest due to connections with the recent theory of cluster algebras. The present survey aims to review the original work of Coxeter and the new developments around the notion of frieze, focusing on the representation theoretic, geometric and combinatorial approaches.
متن کاملCombinatorial Interpretations for the Markoff Numbers
In this paper we generalize the concept of Markoff numbers with the construction of Markoff polynomials. We then present a combinatorial model based on a family of recursively-defined graphs which we call snakes, such that the Markoff polynomials and Markoff numbers are respectively weighted and unweighted enumerators of the perfect matchings of snakes. We have found four proofs of the central ...
متن کاملFrieze patterns for punctured discs
We construct frieze patterns of type DN with entries which are numbers of matchings between vertices and triangles of corresponding triangulations of a punctured disc. For triangulations corresponding to orientations of the Dynkin diagram of type DN , we show that the numbers in the pattern can be interpreted as specialisations of cluster variables in the corresponding Fomin-Zelevinsky cluster ...
متن کاملCongruence and Uniqueness of Certain Markoff Numbers
By making use of only simple facts about congruence, we first show that every even Markoff number is congruent to 2 modulo 32, and then establish the uniqueness for those Markoff numbers c where one of 3c − 2 and 3c + 2 is a prime power, 4 times a prime power, or 8 times a prime power.
متن کاملOn the Length of a Random Minimum Spanning Tree
We study the expected value of the length Ln of the minimum spanning tree of the complete graph Kn when each edge e is given an independent uniform [0, 1] edge weight. We sharpen the result of Frieze [6] that limn→∞ E(Ln) = ζ(3) and show that E(Ln) = ζ(3) + c1 n + c2+o(1) n4/3 where c1, c2 are explicitly defined constants.
متن کامل